Chebyshev

Theorem 1.1 (Chebyshev) Suppose X is a random variable with finite expectation, μ , and variance, σ^2 . Then for any real $\epsilon > 0$

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2} \tag{1}$$

or

$$P(|X - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2} \tag{2}$$

The following figure illustrates this point.

Figure 1: Chebyshev

Proof 1.1 By definition

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx \tag{3}$$

Following Figure 1, we have

$$\sigma^{2} = \int_{-\infty}^{\mu - \epsilon} (x - \mu)^{2} f_{X}(x) dx + \int_{\mu - \epsilon}^{\mu + \epsilon} (x - \mu)^{2} f_{X}(x) dx + \int_{\mu + \epsilon}^{\infty} (x - \mu)^{2} f_{X}(x) dx$$
 (4)

Note that

$$\int_{u-\epsilon}^{\mu+\epsilon} (x-\mu)^2 f_X(x) dx \ge 0 \tag{5}$$

so that

$$\sigma^2 \ge \int_{-\infty}^{\mu - \epsilon} (x - \mu)^2 f_X(x) dx + \int_{\mu + \epsilon}^{\infty} (x - \mu)^2 f_X(x) dx \tag{6}$$

As x tends from $-\infty$ to $\mu - \epsilon$ and from $\mu + \epsilon$ to ∞ the smallest values of $(x - \mu)^2$ are attained for $\mu \pm \epsilon$. Hence,

$$\sigma^2 \geq \int_{-\infty}^{\mu-\epsilon} \epsilon^2 f_X(x) dx + \int_{\mu+\epsilon}^{\infty} \epsilon^2 f_X(x) dx \tag{7}$$

$$= \epsilon^2 \left[\int_{-\infty}^{\mu - \epsilon} f_X(x) dx + \int_{\mu + \epsilon}^{\infty} f_X(x) dx \right]$$
 (8)

$$= \epsilon^2 \left[P(X \le \mu - \epsilon) + P(X \ge \mu + \epsilon) \right] \tag{9}$$

$$= \epsilon^2 P(|X - \mu| \ge \epsilon) \tag{10}$$

Thus

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2} \tag{11}$$

Alternatively, letting $\epsilon = h\sigma$ for h > 0 we have

$$P(|X - \mu| \ge h\sigma) \le \frac{1}{h^2} \tag{12}$$

Choosing a different h allows us to find upper bounds on the probability that X takes on a value outside the interval $\mu \pm h\sigma$. We get that, irrespective of the distribution of X, this probability is at most $\frac{1}{h^2}$.