Chebyshev

Theorem 1.1 (Chebyshev) Suppose X is a random variable with finite ex-
pectation, p, and variance, o?. Then for any real € >0
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The following figure illustrates this point.

Figure 1: Chebyshev



Proof 1.1 By definition

o= [ (a-p?fr(@)de (3)

Following Figure 1, we have
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As x tends from —oo to pu—€ and from p+ € to oo the smallest values of
(z —p)? are attained for p+e. Hence,
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Alternatively, letting € = ho for h > 0 we have
1
P(|X - p| > ho) < 7 (12)
Choosing a different h allows us to find upper bounds on the probability that

X takes on a value outside the interval p + ho. We get that, irrespective of
the distribution of X, this probability is at most #



